Name	
Period	Date

2 · Elements and Compounds

NOTES - ATOMS, ISOTOPES, IONS

Never trust atoms ... they make up everything!

What an Atom Looks Like

Particle	Symbol	Location	Charge	Mass	Size
Proton					10 ⁻¹⁵ m
Neutron	5	2	4) N 9	5	10 ⁻¹⁵ m
Electron		8	0		10 ⁻¹⁸ m

 $(1 \text{ charge} = 1.60 \times 10^{-19} \text{ C})$

How Big Is An Atom?

Watch: http://ed.ted.com/lessons/just-how-small-is-an-atom

- If an atom were the size of a blueberry, there would be enough atoms in a grapefruit the size of
- If at atom were the size of a football stadium, the nucleus would be the size of a _____
- Between the nucleus and electrons there is _____
- The density of the nucleus is like putting ______ in a 1 ft³ box.

Another Model of the Atom:

object	actual size	model size	model
proton	10 ⁻¹⁵ m	10 cm	orange
neutron	10 ⁻¹⁵ m		
electron	10 ⁻¹⁸ m		
atom	10 ⁻¹⁰ m		150

The atom's mass is due to:

The atom's volume is due to:

Isotopic Notation

- Atomic Number:
- Mass Number:
- If you change the number of protons, you get _ Elements are arranged on the Periodic Table in order of their _____.
- If you change the number of neutrons in an atom, you get ______ of that element.
- If you change the number of electrons in an atom, you get _____ of that element. In a neutral atom, ______.

Example 1: State the number of protons, neutrons, and electrons in $^{35}_{17}$ Cl⁻

Example 2: Mass Number = 60, Atomic Number = 26, Charge = +2
State the number of protons, neutrons, and electrons, and write the atom in isotopic notation.

Atomic Mass

6 **C** 12.011

• Atomic Mass:

Example 3: 98.9% of carbon atoms are C-12, and 1.1 of carbon atoms are C-13. Assuming the mass of each isotope is its mass number, calculate the atomic mass of carbon.